The effect of Na₂O addition on the magnetic properties of BaFe₁₂O₁₉ ferrites

YUNG-TSEN CHIEN, YUNG-CHAO KO China Steel Corporation, Kaohsiung, Taiwan

The effect of Na₂O addition on the magnetic properties of isotropic BaFe₁₂O₁₉ ferrites from hot-rolled mill scale was investigated. Na₂O was added up to 0.2%. The values of coercivity and energy product maximum are significantly increased, notably $(BH)_{max}$ from 0.8 to 0.9 × 10⁶ Oe G, and those of intrinsic coercivity rise drastically from 2500 to 4000 Oe when Na₂O up to 0.15% is added after calcination. On the other hand, the magnetic properties of the ferrites gradually deteriorate and the values of intrinsic coercivity vary very little when Na₂O up to 0.2% is added prior to calcination. The densification of ferrites is slightly decreased in the presence of the Na₂O, regardless of the time at which it is added.

1. Introduction

The effect of oxide addition on the magnetic properties of $BaFe_{12}O_{19}$ ferrites was recently investigated by Gadalla *et al.* [1] and Yamamichi and Watanable [2]. The effect of oxides on the liquid-phase composition was reported by Arendt [3]. It appears that the effect of Na₂O on the magnetic properties of $BaFe_{12}O_{19}$ ferrites has scarcely been reported in the literature.

It was incidentally found that hot-rolled mill scale and α -Fe₂O₃ from the pickling solution contained a considerable amount of Na₂O which fluctuated widely, i.e. Na₂O = 0.02 to 0.20% from 18 mill-scale samplings and Na₂O = 0.02 to 0.22% from ten α -Fe₂O₃ samplings [4]. The purpose of the present investigation is to study the effect of Na₂O addition on the magnetic properties of BaFe₁₂O₁₉ ferrites.

2. Experimental procedures

The mill scale used in the present work was produced from heavy steel plates during hot-rolling processes. The other raw materials included industrial-grade barium carbonate containing 98.5% BaCO₃ and reagent-grade Na₂CO₃. The chemical composition of the raw materials is given in Table I.

The hot-rolled mill scale, passed through a 2.362 mm opening screen, was ground in sequence by a ball mill and an attritor mill down to -0.044 mm. These powders were leached with deionized water to remove Na₂O. The leached mill scale contained $\approx 0.06\%$ Na₂O and was used to prepare isotropic barium ferrites with n = 5.3, where n is related to the chemical formula BaO $\cdot n$ Fe₂O₃.

Calcination was carried out in an electrical furnace at 1100°C for 4h. The average particle size of the ground barium ferrite was $\approx 1.0 \,\mu$ m which was determined by a Fisher sub-sieve sizer. Discs of 22 mm diameter and $\geq 5 \,\text{mm}$ thickness were formed under a pressure of 1.0 ton cm⁻² by die-pressing dry powder. Sintering was also conducted in an electrical furnace at 1180°C for 2 h.

0022-2461/90 \$03.00 + .12 © 1990 Chapman and Hall Ltd.

3. Results and discussion

3.1. The effect of Na₂O addition before

calcination on the magnetic properties All the magnet specimens were supplemented with 0.3% SiO₂, 0.2% SrO and 0.1% Al₂O₃ prior to calcination as additives to achieve a commercial quality level. The influence of Na₂O addition on the magnetic properties is shown in Figs 1 to 3. As can be seen, the coercivity H_c , remanence B_r and energy product maximum $(BH)_{max}$ all decreased with increasing Na₂O content. It is believed that the deterioration of magnetic properties is most probably caused by the increasing amount of glassy phase and the decreasing densification of the ferrites (Fig. 4) in the presence of Na₂O. It is beneficial to limit Na₂O contamination from the water treatment of the iron oxides obtained from mill scale or pickling solution in a steel plant.

Fig. 5 demonstrates that the intrinsic coercivity iH_c varied very little below 0.1% Na₂O and then increased slightly with increasing Na₂O content up to 0.2%. According to Cowie [5], the magnitude of iH_c depends on crystalline perfection and grain size. As little as 0.2% Na₂O in barium ferrites will apparently slightly promote crystalline perfection and not cause a significant grain growth to occur.

TABLE I Chemical composition of hot-rolled scale*

Constituent	Content (wt %)	
Total Fe	74.9	
SiO ₂	0.054	
Al ₂ O ₃	0.046	
MnO	0.320	
MgO	0.006	
CaO	0.002	
K ₂ O	0.060	
Na ₂ O	0.024	

*After leaching with water.

Figure 1 Variation of coercivity with Na_2O content added before calcination to $BaFe_{12}O_{19}$ ferrites.

Figure 2 Variation of remanence with Na_2O content added before calcination.

Figure 3 Variation of energy product maximum with Na_2O content added before calcination.

Figure 4 Variation of shrinkage with Na_2O content added before calcination.

Figure 5 Variation of intrinsic coercivity with Na_2O content added before calcination.

Figure 6 B-H curves of $BaFe_{12}O_{19}$ ferrites (a) without Na_2O , (b) with 0.15% Na_2O added after calcination.

Figure 7 Variation of coercivity with Na₂O content added after calcination.

Figure 8 Variation of remanence with Na_2O content added after calcination.

3.2. The effect of Na₂O addition after calcination on the magnetic properties

The magnet specimens were given no additives other than Na₂O. Fig. 6 shows that 0.15% Na₂O addition to the magnet strikingly changed the shape of the B-H curve. The influence of Na₂O addition on the magnet properties is demonstrated in Figs 7 to 9. It can be clearly seen that the values of H_c and $(BH)_{max}$ are significantly increased in the presence of Na₂O up to 0.15% and then decreased; those of B_r increased very little up to 0.15% Na₂O and then also decreased. Fig. 10 shows that the densification was slightly decreased in the presence of as little as 0.05% Na₂O and then varied very little with Na₂O content up to 0.2% Na₂O.

Fig. 11 demonstrates that the values of intrinsic coercivity iH_c are increased drastically from 2500 to 4000 Oe when the Na₂O content is raised to 0.15%. Apparently, Na₂O is quite effective for the enhancement of intrinsic coercivity if its content is up to 0.15%. As mentioned previously [5], the rise of iH_c values is caused by the crystalline perfection and the decrease of iH_c values is possibly caused by grain growth.

Fig. 12 demonstrates that 1% Na₂O addition to the ferrite apparently promotes crystalline perfection but causes remarkable grain growth.

Figure 10 Variation of shrinkage with Na_2O content added after calcination.

4. Summary

The effect of Na₂O addition on the magnetic properties of isotropic BaFe₁₂O₁₉ ferrites was investigated. Hot-rolled mill scale was used and Na₂O was added up to 0.2% for the preparation of ferrites. The values of the coercivity H_c and energy product maximum $(BH)_{max}$ are significantly increased, notably $(BH)_{max}$ from 0.8 to 0.9 × 10⁶ Oe G and those of the intrinsic coercivity iH_c rise drastically from 2500 to 4000 Oe when Na₂O up to 0.15% is added after calcination. However, the magnetic properties of the ferrites gradually deteriorate and the values of intrinsic coercivity are varied very little when Na₂O up to 0.2% is added prior to calcination. The densification of ferrites is slightly decreased in the presence of Na₂O, regardless of the time at which it is added.

Acknowledgements

The authors wish to thank P. Y. Chen, General Manager of New Materials R & D Department, J. Y. Huang, General Manager of Steel and Aluminium R & D Department, and I. L. Cheng, Vice President, Technology, at China Steel Corporation, for their support.

Figure 9 Variation of energy product maximum with Na_2O content added after calcination.

Figure 11 Variation of intrinsic coercivity with Na_2O content added after calcination.

Figure 12 Optical micrograph of $BaFe_{12}O_{19}$ ferrite with 1.0% Na_2O added after calcination.

References

- 1. A. M. GADALLA, H. E. SCHÜTZ and H. W. HENNIKE, J. Magn. Magn. Mater. 1 (1976) 241. 2. Y. YAMAMICHI and Y. WATANABE, Powd. & Powd.
- Metall. 21 (1974) 200.
- R. H. ARENDT, J. Appl. Phys. 44 (1973) 300.
 Internal communication, China Steel Corporation, 1988.
- 5. R. M. COWIE, PhD Thesis, University of Sheffield (1985).

Received 22 March and accepted 4 September 1989